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ABSTRACT
With sustained growth of software complexity, finding se-
curity vulnerabilities in operating systems has become an
important necessity. Nowadays, OS are shipped with thou-
sands of binary executables. Unfortunately, methodologies
and tools for an OS scale program testing within a limited
time budget are still missing.

In this paper we present an approach that uses lightweight
static and dynamic features to predict if a test case is likely
to contain a software vulnerability using machine learning
techniques. To show the effectiveness of our approach, we
set up a large experiment to detect easily exploitable mem-
ory corruptions using 1039 Debian programs obtained from
its bug tracker, collected 138,308 unique execution traces
and statically explored 76,083 different subsequences of func-
tion calls. We managed to predict with reasonable accuracy
which programs contained dangerous memory corruptions.

We also developed and implemented VDiscover, a tool that
uses state-of-the-art Machine Learning techniques to predict
vulnerabilities in test cases. Such tool will be released as
open-source to encourage the research of vulnerability dis-
covery at a large scale, together with VDiscovery, a public
dataset that collects raw analyzed data.

1. INTRODUCTION
In spite of the progress made in programming languages and
software engineering techniques, most of the programs we
routinely use (from operating system components to main
office or web applications) still contain numerous bugs. How-
ever, some of these bugs are clearly more dangerous than
the others: the ones which may affect the security of the
whole system, hereafter referred to as software vulnerabili-
ties. As a consequence, a serious issue for software editors
is not only to find bugs, but also to identify which ones cor-
respond to vulnerabilities and require in-depth analysis to
estimate their dangerousness, and if necessary, rapidly dis-
tribute some adequate patch.

Nevertheless, vulnerability detection is not a simple opera-
tion. As has been pointed out in [1],

“The defect caused an infection, which caused
a failure and when we saw the failure we tracked
the infection, and finally found and fixed the de-
fect.”

In the context of vulnerability discovery, a failure (i.e., an
observable incorrect program behavior) could be a crash.
Tracking the infection is possible by monitoring the program
execution until it finally reaches the defect, i.e. some code
calling to an insecure library function. We can observe that
all of the three points are related to each other in a way
that the presence of one can be used to infer the presence
of the other. In other words, a defect will manifest itself in
the infection in a very peculiar way, which in turn, will lead
to a failure.

Some static analysis techniques have been proved successful
in finding classical programming flaws, like buffer overflows
or null-pointer dereferences, but they suffer from a high per-
centage of false positives. More importantly, only a few tools
are able to operate on the binary code. As a result, one of the
most effective vulnerability detection techniques still relies
on large fuzzing campaigns, feeding the target program with
various inputs in order to produce crashes that need to be
(manually) analyzed afterwards. This is a time-consuming
activity. For instance, an operating system like Debian con-
tains more than 30,000 programs and 80,000 bug reports.
Methodologies and tools for an OS scale program testing in
a limited time budget are still missing. Therefore, there is a
strong need for techniques to be used as fast predictors, to
quickly identify which programs are more likely to contain
a vulnerability, in order to direct the fuzzing process.

Given the complexity of modern software, the relationship
between defect, infection and failure is not easy to notice,
especially by a human analyst. Machine learning and data
mining techniques [2] have been used to learn such subtle
relationships (dependencies) in a wide range of applications
[3, 4, 5], when the complexity involved is too high. As a
result, in this work, we resort to the application of Machine
Learning techniques to learn such dependencies in the case
of a failure.

The objective of our work is to make a step in this direction
by presenting a scalable machine learning approach that uses
lightweight static and dynamic features to predict if a test
case is likely to contain a software vulnerability. As far as



we know, this is the first large scale study on vulnerability
discovery for binary only programs.

1.1 Contributions
The main contribution of this paper is to demonstrate the
feasibility of a large-scale study of binary programs in or-
der to predict vulnerabilities according to some procedure
to perform vulnerability discovery. In order to build a pre-
dictor, we started defining and evaluating different sets of
features that can be automatically extracted from binary
programs. Such features are designed to be scalable: they
are extracted using very lightweight static and dynamical
analysis.

To show the effectiveness of our approach, we set up a very
large experiment to detect easily exploitable memory cor-
ruptions using 1039 Debian programs obtained from its bug
tracker. To perform a reasonable evaluation of our method-
ology, we collected 138,308 unique execution traces and stat-
ically explored 76,083 different subsequences of function calls.
We managed to predict which programs contained danger-
ous memory corruptions with a 55% of accuracy and which
programs resulted robust with a 83% of accuracy.

We also developed and implemented VDiscover, a tool that
uses state-of-the-art Machine Learning to predict vulnerabil-
ities in test cases. Our tool will be released with an open-
source license to encourage the research of vulnerability dis-
covery at large scale, together with VDiscovery, a public
dataset that collects raw analyzed data.

The paper is organized as follows. We dedicate Sec. 2 to
explain the background on vulnerability discovery. Later,
we overview the proposed methodology in Sec. 3 and we
explain it in detail in Sec. 4. Data generation and feature
extraction is presented in Sec. 5. Then, Sec. 6 is devoted
to introduce the Machine Learning techniques used in this
paper. Experimental setup is detailed in Sec. 7 and results
are presented and discussed in Sec. 8 followed by a survey
of related work in Sec. 9. Finally we draw some conclusions
and point possible future work directions in Sec. 10.

2. BACKGROUND
Many different vulnerability discovery procedures (VDP)
has been proposed in the Computer Security literature to de-
tect potentially vulnerable issues in software. As expected,
every VDP has particular requirements and biases to iden-
tify (specific) vulnerabilities. In this section, we highlight
the attributes of different VDP proposed by several authors.

2.1 Fuzzing and Smart Fuzzing
Currently, one of the most effective approaches to find vul-
nerabilities in large software is based on fuzzing techniques [6],
i.e., feeding the target application with unexpected inputs
and looking for abnormal program termination. The crucial
step in fuzzing is clearly to choose relevant unexpected in-
puts, i.e., likely to reveal potential vulnerabilities. Several
techniques can be used.

One of the simplest techniques is random mutation of known
correct inputs. It requires only a basic knowledge of the tar-
get application. However, most of the mutated inputs are

likely to be rejected in the early steps of the program exe-
cution either at parsing or because of checksum verification.

To overcome this problem, another input generation tech-
nique is to better control the mutations using some knowl-
edge about the input format, like in grammar-based fuzzing [7].
However, this technique is effective only with a high level of
expertise on the target application.

Such black-box fuzzing techniques are rather easy to imple-
ment and they are highly scalable since they do not involve
complex computations nor heavy program monitoring tech-
niques. Nevertheless, they suffer from two drawbacks: first,
they do not allow to control the program execution and sec-
ond, huge fuzzing campaigns are required to obtain valu-
able results. Furthermore, the crashes obtained should be
processed a posteriori, first to filter redundant information
(crashes resulting from the same bugs), and second to sort
out between harmless bugs and more serious ones. This op-
eration requires a high-level of expertise and is really time-
consuming.

To overcome these limitations, some white-box fuzzing ap-
proaches have been proposed [8, 9]. The underlying idea is
to generate the application inputs with the help of its code.

Clearly, the benefit of these “smart-fuzzing” techniques is to
better control the program exploration according to a given
objective (e.g., either maximizing code coverage, or focus-
ing on specific parts, more likely to be vulnerable). Hence,
many tools have been developed in this direction (Klee [10],
TaintScope [11]) and their ability to find vulnerabilities has
been illustrated on several case studies.

Moreover, some works make use of concolic execution for
vulnerability detection [12, 13, 14].

2.2 Static Analysis
Historically, static analysis tools were used to prove the ab-
sence of bugs inside a program [15][16], and they proved
to be particularly effective in specific application domains
like embedded systems or aeronautic applications. Their
main advantage is clearly to provide sound reports on the
whole set of program executions. However, using these tech-
niques on more general-purpose software is much harder
and time consuming. This is essentially due to the over-
approximations performed during the analysis to preserve
soundness, since static analysis is undecidable [17]. Pro-
viding good approximation techniques for general program
constructions (involving dynamical memory allocations and
complex data structures) is hard, and therefore the number
of false positives produced is usually huge.

However a few works have been proposed to apply static
analysis techniques in the context of vulnerability detec-
tion. They offer lightweight static analysis [18, 19], either on
source or binary code, and they generally focus in a specific
kind of vulnerability [20]. Also, they sacrifice soundness in
order to serve as “bug finders”, allowing to better control the
trade-off between precision and scalability.

Nevertheless, even if it appears that pure static analysis
techniques are not precise enough to be used as standalone



Figure 1: Summary of train and recall phases in VDiscover

general vulnerability detection techniques, they offer highly
valuable preprocessing information to combine with other
approaches like concolic execution or Machine Learning.

3. OVERVIEW
Our study aims to define and evaluate some machine learn-
ing techniques that can be used to predict whether a bi-
nary code may contain certain vulnerabilities. We propose
a methodology that works in two phases: training and recall.

In the training phase, a large amount of test cases are col-
lected from the binary code in a training dataset. These
test cases are characterized by static features extracted from
the disassembled binaries and dynamical features extracted
from its execution analysis. These features are based on the
use patterns of the C standard library. Additionally, test
cases are evaluated using a vulnerability detection proce-
dure: such procedure flags as vulnerable or not every test
case in the train dataset. The objective of this phase is
to use the extracted features and the vulnerability discov-
ery procedure to train a predictor using supervised machine
learning techniques.

After that, in the recall phase, a trained classifier is used to
predict if new test cases, extracted from new programs, will
be flagged as vulnerable or not. Later, a flagged test case
can be prioritized in further analysis. It is also important
to note that our approach is not replacing the outcome of
a vulnerability detection procedure. Figure 1 summarizes
both phases of our approach.

3.1 Building a Predictor
Our tool aims to deal with a very large number of test cases
to decide which ones should be further analyzed to look for
security vulnerabilities. Needless to say, we want our predic-
tor to distinguish between flagged and unflagged test cases
as correct as possible. In this work, accuracy is measured
in terms of the errors predicting flagged test cases (false
negatives, also called type II error) and the errors predict-
ing unflagged test cases (false positives, also called type I
error). VDiscover aims to minimize both types of errors
during the training phase. On the one hand, the reduction
of false positives allows to discover more vulnerabilities in a
shorter time. On the other hand, reducing false negatives
decreases the number of misses vulnerabilities in this pre-
dictive analysis.

The extraction and processing of our features to predict also
included some distinctive design principles. Such principles
are:

1. No source-code required: Our features are extracted
using static and dynamic analysis for binaries pro-
grams, allowing our technique to be used in proprietary
operating systems.

2. Automation: Some Machine Learning applications
rely on heavily engineered features to obtain a good
performance. This typically requires a human expert
to review candidate features before the training phase.
In this work, we will focus only on feature sets that
can be extracted and selected automatically, given a
large enough dataset.

3. Scalability: Since we want to focus on scalable tech-
niques, we only use lightweight static and dynamic
analysis. Costly operations like instruction per in-
struction reasoning are avoided by design.

4. METHODOLOGY
In order to show experimental results on the performance
of VDiscover to predict vulnerabilities in new test cases,
we need a concrete vulnerability detection procedure (VDP)
and a dataset to train our tool. In particular, we evalu-
ated our technique using a simple fuzzer to detect easily ex-
ploitable memory corruptions on a large corpus of test cases.
Despite the evaluation of our technique will be limited to the
use of a simple fuzzer as VDP, it is important to note that
detection of this kind of vulnerability is not a fixed com-
ponent of VDiscover. In fact, the adaptive computation
performed by machine learning techniques provides a con-
venient machinery to predict the presence of vulnerabilities
using another VDP.

4.1 Detecting Memory Corruptions
Our vulnerability detection procedure comprises two com-
ponents: a fuzzer to mutate the original test case and a dy-
namic detection module to identify easily exploitable mem-
ory corruptions.

We used a simple fuzzer to explore a large number of varia-
tions of a test case. It performs only two types of mutations:
replacement of one byte by another and expansion of a ran-
dom byte at some position in the original input. Using it,
we defined a fuzzing campaign that mutates and executes
each test case 10,000 times, large enough to catch some in-
teresting memory corruptions.

We also need to define when a program is vulnerable to a
potentially or easily exploitable memory corruption and how
that can be detected automatically. Detecting this type of
vulnerability is not as easy as it sounds, especially without
source code or debugging information. We define two ways
of detecting memory corruptions, through explicit and im-
plicit evidence of them.

Explicit signs of stack and heap memory corruptions are:

1. Corruption of stack memory: Some of the Debian bi-
naries are compiled with stack protections provided by
the GNU C standard library, so in case of stack corrup-
tion such protections will abort the execution. Addi-
tionally, we can inspect the call stack when a program



crashed, looking for return addresses of called func-
tions. If we find at least one invalid return pointer,
then we immediately conclude that the stack frames
were corrupted.

2. Corruption of heap memory: We take advantage of the
heap consistency check made by the GNU C standard
library. If we find a call to abort related with this
check, we conclude that a heap corruption happened.

Implicit hints of memory corruptions include:

1. Corrupted or unexpected arguments in some functions:
A few key functions like strcpy, memcpy, fread, fwrite,
among others have its arguments inspected during ex-
ecution. For example, a call to memcpy indicates a po-
tential memory corruption if it has a very large count
parameter value (e.g., bigger than 224).

2. Corruption of a pointer to a function: If a crash is de-
tected, we inspect if the instruction pointer is pointing
to an invalid or a non-executable page.

4.2 Memory corruption for fun and profit
To illustrate how important it is to prevent memory corrup-
tion, we present a small example of this issue that can easily
be exploited to hijack the control flow of a faulty program.
The vulnerable condition in this example can be detected us-
ing the procedure detailed in 4.1 and the affected program
is flagged as vulnerable in VDiscovery.

We will show in detail the analysis of a crash in xa, a small
cross-assembler for the 65xx series of 8-bit processors (used
in computers such as the Commodore 64). This command
line utility is located in the Debian package xa65. The ver-
sion 2.3.5 can be crashed using an unexpectedly large input
in one of its arguments. The insecure code is shown in Fig-
ure 2a. This crash is the result of a buffer overflow caused
by the improper use of sprintf at lines 9–10. It is worth
mentioning that this memory corruption is not directly ex-
ploitable by overwriting the return address of a function call
since the invocation of sprintf will write in global memory
(at lines 2–3).

An alternative way to exploit this bug is available, since a
pointer to a FILE structure is controllable by an attacker. A
large input in the sprintf argument can be used to overflow
the array, and rewrite the fperr FILE pointer. By abusing
the fact that the FILE structure contains a virtual function
table, we can craft a fake FILE structure with a pointer to
our own payload. Once this layout is placed in memory, we
should just wait for the program to execute a fprintf (line
19) with our malicious FILE structure (and to use our fake
virtual function table), which happens just after, inside the
logout function. This technique is not new at all, in fact,
it was well known by Greek hackers more than 10 years
ago [21]. Despite that, it still works today when it is tested
on a fully updated installation of Debian Sid.

We will also illustrate how VDiscover extracts patterns
to detect vulnerable programs using a small piece of x86
assembly code from the xa utility shown in Figure 2b, since

this program contains many examples of vulnerable code.
Such code reads data from the environment (line 1) and
calls to strcpy (lines 5–7) without checking the size of the
input variable.

5. DATASET
It is not possible to learn from a single test case using a
Machine Learning approach. A large amount of them are
needed during a training procedure. Also, additional ex-
ample cases are required to measure a trained predictor.
Unfortunately, at the time of writing, we found no suitable
dataset to perform the evaluation of our technique.

The need for these cases were our main motivations to con-
struct VDiscovery, our dataset. It was created by ana-
lyzing 1039 test cases taken from the Debian Bug Tracker.
Every test case uses a different executable program and they
are distributed over 496 packages. They were originally
packed along their inputs by the Mayhem team using their
symbolic execution tool and submitted to the Debian Bug
Tracker [22]. The programs comprised in VDiscovery are
quite diverse and included data processing tools from sci-
entific packages, simple games, small desktop programs and
even an OCR. Using VDiscover, we can unpack and parse
the necessary input sources (command line, standard input,
files, etc.) in order to instantly reproduce each test case.

5.1 Classes
After using the previously defined vulnerability discovery
procedure described in Sec. 4.1, test cases are divided in two
classes: flagged as vulnerable and not flagged as vulnerable.
A program is said to be flagged as vulnerable if there is at
least one trace that exhibits a vulnerable memory corruption
pattern. As expected, our dataset suffers from a severe class
imbalance [23]. Only 8% of the total of programs are flagged.
This is an issue we have to tackle before the predictor starts
learning from it, as explained in Sec. 7.

5.2 Features
In this work, two sets of features are defined and evalu-
ated: dynamic features extracted from the execution of test
cases and static features extracted from the binary pro-
grams. Both set of features try to abstract the use pat-
terns of the C standard library and they are represented as
variable-length sequences. Nevertheless, they aim to cap-
ture different aspects of it. On the one hand, static features
are extracted by detecting potential subsequences of func-
tion calls. On the other hand, dynamic features are captured
from execution traces containing concrete function calls aug-
mented with its arguments.

Features are not necessarily correlated with the concrete vul-
nerability that we are trying to detect. In fact their objective
is to provide a redundant and robust similarity measure that
a Machine Learning model can employ to predict whether a
test case will be flagged as vulnerable or not. Such predic-
tion will be based on previously seen examples during the
training phase.

5.2.1 Static Features
Static features are supposed to capture information relevant
to a whole program, and they should be obtained without



1 /* g l o ba l v a r i a b l e s */
2 stat ic char out [MAXLINE] ;
3 stat ic FILE * fpout , * fpe r r , * f p l ab ;
4 . . .
5
6 int main ( int argc , char *argv [ ] )
7 {
8 . . .
9 s p r i n t f ( out , ”Couldn ' t open source \

10 f i l e '%s ' !\ n” , i f i l e ) ;
11 logout ( out ) ;
12 . . .
13 }
14
15 void l ogout ( char * s )
16 {
17 f p r i n t f ( s tde r r , ”%s ” , s ) ;
18 i f ( f p e r r )
19 f p r i n t f ( fpe r r , ”%s ” , s ) ;
20 }

(a)

1 c a l l getenv
2 t e s t %eax ,%eax
3 j e @15
4 l e a −0x100c(%ebp) ,%ebx
5 mov %eax , 0 x4(%esp )
6 mov %ebx ,(% esp )
7 c a l l s t r cpy
8 movl $0x123 , 0 x4(%esp )
9 mov %ebx ,(% esp )

10 c a l l s t r t o k
11 . . .
12 . . .
13 . . .
14 . . .
15 r e t

(b)

Figure 2: Different routines of /usr/bin/xa in C and x86 assembly

running the code on particular inputs. Classical static anal-
ysis techniques use graph-based representations to express
the code structure, like call graphs, control and data-flow
graphs, etc. However, building such structures is costly and
not always possible from a stripped binary code.

The approach we propose is to “approximate” a code struc-
ture as a set of finite sequence calls to the standard C library.
Such a sequence set can be viewed as an abstraction of the
program call graph where only some function calls are con-
sidered, and where the graph structure is flattened.

These static features can be extracted directly from the bi-
naries using a very lightweight static analysis. First, the bi-
nary is disassembled using a linear sweep algorithm. The set
I of direct calls to C standard library functions is extracted
from the disassembled code. Elements of I will be used
as starting points for a random exploration of the program
control-flow graph. We build the set S of library function
calls by repeatedly using the algorithm described informally
below:

1. select an element c of I and insert it in an empty se-
quence σ;

2. follow the subsequent instructions of c in the disassem-
bled code, and:

• if a call or jump to a C standard library function
is found, append it to σ and continue with the
next instruction;

• if an unconditional jump to the address x is found,
continue at address x;

• if a conditional jump is found, randomly select a
branch and continue on this branch;

• otherwise, skip the instruction and continue with
the next one;

3. when a return statement or an indirect jump is reached,
the sequence σ is terminated and added to the result-
ing set S.

As expected, this simple procedure extracts feasible and un-
feasible subsequences of C standard library calls by a ran-
dom walk on a part of the program control flow graph.

Example. In Figure 2b, if we start from the call to getenv
at (1), two possible subsequences of C standard library calls
can be extracted, according to the conditional jump at (3).
The resulting set S is then:

{[getenv; strcpy; strtok; . . . ], [getenv]}

Computational Cost. The extraction of this kind of fea-
tures requires to completely disassemble a program: the exe-
cutable of the analyzed test case. After that, the lightweight
static analysis performed is stateless and the random walk-
ing only needs to collect a sample of the potential C standard
library calls.

5.2.2 Dynamic Features
Dynamic features are supposed to capture a sample of the
behavior of a program in terms of its concrete sequential
calls to the C standard library. Additionally the final state
of the execution is included. Such features are extracted by
executing for a limited time a test case and hooking program
events, collecting them in a sequence. We define program
events as either a call to the C standard library function
(abstracted simply as fci) with its arguments or the final
state of the process:

fci(arg1, .., argn) | FinalState

The final state will be analyzed to determine which event
will be the last one of a trace. In this work, a program can
finish with an exit, an abnormal termination, an induced
abnormal termination or, it can run out of time.

Exit | Crash | Abort | T imeout

An important difference with the static features is the amount
of data that can be potentially extracted from a test case.
Even for small programs, the collection of traces can create
a very large dataset, since a simple loop can be unfolded
into an arbitrarily long sequence of events.



Nevertheless, it is really difficult for a Machine Learning
classifier to discover useful relations using these traces of raw
events. The fact that the arguments of function calls are
low level computational values, like pointers and integers,
becomes an issue for learning patterns in traces. There are
two important reasons for this.

In first place, it will induce an enormous range of different
values (e.g., 232 in 32-bit). If we want to train our classifier
with discrete sequences of events, it is essential to drasti-
cally reduce the range of different events. And in second
place, these values convey very little information by them-
selves. So, it is necessary to augment them with relevant
information in order to be able to learn from them.

To address these two issues, we decided to tag every argu-
ment value with a suitable subtype. The subtyping relation
we defined is shown in Figure 3. It is loosely inspired by TIE
[24] and PointerScope [25] subtyping systems for reverse en-
gineering.

In the case of the pointers (Ptr32), it is very useful to know
the region where they are pointing to: for instance, HPtr32
indicates heap, SPtr32 stack and GPtr32 global memory.
Also it is relevant to know if they are dangling (DPtr32) or
null (NPtr32).

And in the case of integers (Num32), since they convey even
less information than pointers, it is useful to know if they
are zero, small, large or very large. To formalize this kind
of imprecise knowledge, our approach is to divide them in
logarithmic buckets so a subtype of the generic integer type
gives an idea of how large it is, e.g Num32Bn indicates a 32-
bit number between 2n and 2(n+1). In case of looking for
suspiciously small or large arguments, for example, reading
or writing bytes, it is useful to use such subtypes.

Example. After executing the vulnerable code in Figure 2b,
VDiscover captures the following piece of trace presented
here in comparison with the ltrace [26] output:

ltrace VDiscover

getenv('XAINPUT')
strcpy(0xbfffc0fc, 'input')

strtok('input', ',')

getenv(GPtr32)
strcpy(SPtr32,HPtr32)
strtok(HPtr32,GPtr32)

Computational Cost. The extraction of this kind of fea-
tures requires the execution of a test case. In order to
do that, the analyzed binary and its dynamically linked li-
braries are instrumented to detect calls to C standard func-
tions. Whitelisting is also performed, discarding internal
function calls from the libraries contained in the C standard
library package. Such restriction in our dataset aims not
only to minimize the cost of instrumentation but also to re-
duce the complexity of the resulting features. It therefore
allows different Machine Learning techniques to learn from
this kind of features more easily.

It is also worth to mention that we designed VDiscover to
require the collection of a single trace during the recall
phase. In our experiments, such trace is collected using the
fuzzer detailed in 4.1 to reduce the bias of the test cases (gen-
erated using a symbolic executor). Otherwise, the original

Figure 3: Subtyping relation used to process the function
arguments in the traces

test case should be used.

6. A MACHINE LEARNING APPROACH
6.1 Models
A wide variety of Machine Learning and statistical models
address the classification problem. We can sort these models
ranging from those with few parameters, linear boundary
surface and easy to train, to models with many parameters,
nonlinear boundary surface and very hard to train. The
logistic regression model [2] is between the former. It models
the log conditional probability of category outputs (given
the inputs) as an affine transform of the inputs. In our case
these inputs are either the static or the dynamic features
after being preprocessed.

The logistic regression model can be extended to a nonlin-
ear model by adding one or more intermediate nonlinear
transforms –known as hidden layers– between the input and
the affine transform. These layers also consist of an affine
transform plus an element-wise nonlinearity. The resulting
model is the most common version of a multilayer percep-
tron (MLP). Notice that when using an MLP model we must
choose certain design parameters (hyperparameters) such as
the number of layers and the dimension of each intermediate
representation (number of hidden units).

The parameters (or weights) of each layer are obtained by
maximizing the log-likelihood over the training data. This
formulation casts the learning process as an optimization
problem over the weights. The optimization is performed
using the stochastic gradient descent (SGD) algorithm which
is commonly used for training artificial neural networks [2].
The SGD algorithm is suitable for handling large datasets
since training examples are seen in small batches. The opti-
mization algorithm has its own hyperparameters that must
be chosen beforehand together with model hyperparameters.

Additionally, we complete the list of Machine Learning mod-
els considered for comparison with the random forest method
[27]. Random forest is an ensemble of decision trees trained
on bootstrap data sets with a random selection of features.
This model is a widely adopted method for classification
due to its resistance to overfitting and the small number of
hyperparameters that are required to optimize during the
training phase.

6.2 Validation and regularization
All Machine Learning methods are susceptible to overfit-
ting, i.e. explaining certain particular features present in a
finite training set which damage the performance for new
and unseen examples. This behavior implies that an error



Figure 4: Preprocesing of dynamic features using word2vec

estimation over the training set is overly optimistic. There-
fore a separated set of unseen samples is required for an
unbiased error estimate. Furthermore if we want to use this
estimation for choosing the best set of hyperparameters we
must use a validation set for this purpose and leave an un-
seen test set for the final unbiased error estimate [2]. This
means that we must split the available data in three parts:
the training, validation, and test sets.

The validation set is used for monitoring the error over un-
seen samples during training. By stopping training when
validation error reaches a minimum some degree of overfit-
ting can be avoided. This early stopping technique [2] also
biases the model to having small weights since they are ini-
tialized with small random values.

Another way for improving generalization is the recently
proposed dropout training technique [28]. This technique
has been widely adopted in recent years for improving gen-
eralization error over a large variety of neural networks [29,
30]. We applied it to both logistic regression and MLP.

7. EXPERIMENTAL SETUP
7.1 Data Preprocessing
Before starting to train the vulnerability predictor of VDiscover,
the features of our dataset were preprocessed. Data pre-
processing is essential to be able to train and test Machine
Learning models out of the box. This procedure should also
reduce the dimensionality of the sequential data in VDiscovery,
since training Machine Learning models require to use fixed-
length inputs.

In order to process the different sets of features, we used two
procedures taken from the text processing and mining field.
We started considering each trace as a text document. Such
approach is very similar to the ones already used to deal with
traces in other works [31, 32]. Also, for each preprocessing
procedure, different parameters were used, since they can
have a large impact in the accuracy of a trained classifier:

• bag-of-words: this widely used [33] preprocessing tech-
nique was applied. For each feature set, we used 1-
grams, 2-grams and 3-grams to get suitable represen-
tations to train and test our vulnerability predictor.

• word2vec: this preprocessing technique was recently
designed for learning continuous vector representations
[34] of words in large text datasets. We selected it since
it was successfully used in a variety of text mining
applications [35, 36]. As shown in Figure 4, word2vec
was used to generate a vectorial representation of all
possible events. Then, for each trace, a vector was
formed selecting events from the beginning and the end
of each trace. We experimented with 20, 50, 100 or 200

vectorized events concatenated in order to characterize
complete executions.

A critical issue in our dataset is the class imbalance. We
addressed it using a well tested solution known as random
oversampling [23] in order to facilitate the learning process
of different classifiers.

7.2 Training Procedure and Models
In order to perform a valuable evaluation of the different fea-
tures and classification methods, we processed several train-
ing datasets with only static or only dynamical features, so
every set of features was evaluated independently.

For each feature set, a total of 40 predictive experiments
were made splitting the dataset in three completely dis-
joint program sets: train, validation and test. As we ex-
plained in Sec. 6, such condition is essential to report honest
results. We want our trained classifiers to generalize beyond
the examples available in the training set of programs.

In our experiments, we trained several machine learning clas-
sifiers: logistic regression, MLP of single hidden layer and
random forest. Mature and well tested software packages
like scikit-learn [37] and pylearn2 [38] were employed to train
and test different classifiers.

7.3 Error Evaluation
The use of a highly imbalanced dataset requires additional
care when accuracy is computed after the prediction of a test
set. Otherwise, a trivial classifier predicting every program
as unflagged will report a misleading accuracy. In order to
use a sensible test error measure, we account false positives
and false negatives as percentages. To obtain a single error
percentage, we can average false positives and false negatives
into a balanced test error. Unless stated otherwise, we refer
to this quantity as test error.

8. RESULTS AND DISCUSSION
8.1 Results
Tables 1a, 1b and 1c summarize the test errors on vulner-
ability detection. Our most accurate classifier was a ran-
dom forest trained using dynamical features. To show
the accuracy of such classifier, we present the corresponding
confusion matrix in Table 3a in terms of the test cases that
VDiscover detects as flagged or not. Using the most ac-
curate classifier, we can estimate the reduction in the effort
needed to discover new vulnerabilities.



Input Logistic Regression MLP
200 events 38%± 1 35%± 1
100 events 34%± 1 37%± 1
50 events 35%± 1 36%± 1
20 events 37%± 1 35%± 1

(a) Dynamic features (word2vec)

Input Logistic Regression Random Forest
1-grams 40%± 1 32%± 1

1–2-grams 40%± 1 31%± 1
1–3-grams 40%± 1 31%± 1

(b) Dynamic features (bag-of-words)

Input Logistic Regression Random Forest
1-grams 37%± 1 43%± 1

1–2-grams 37%± 1 41%± 1
1–3-grams 37%± 1 40%± 1

(c) Static features (bag-of-words)

Table 1: Average test error of vulnerability prediction using VDiscover

Variable Importance

fflush:0=Ptr32 6%
StackCorruption 6%

MemoryCorruption 4%
malloc:0=Num32B24 4%
fread:1=Num32B8 3%
memset:0=GPtr32 3%

memset:1=Num32B0 2%
strcat:1=SPtr32 2%
strcat:1=GPtr32 2%
exit:0=Num32B32 2%
strncpy:0=SPtr32 2%
strrchr:0=SPtr32 2%

(a) With relevant features

Variable Importance

strrchr:1=Num32B8 11%
printf:0=GPtr32 9%
IO getc:0=Ptr32 4%

malloc:0=Num32B32 3%
getenv:0=GPtr32 3%

strcasecmp:1=GPtr32 3%
open:1=Num32B8 3%

fprintf:0=Ptr32 3%
Timeout 2%

strcasecmp:0=SPtr32 2%
fopen:0=SPtr32 1%

malloc:0=Num32B16 1%

(b) Without relevant features

Table 2: A comparison of variable importance between trained vulnerability predictors with and without features relevant to memory

corruptions



If we recall the percentage of programs found vulnerable
(8%) and non-vulnerable (92%) in our dataset presented in
5, we can compute which is the percentage of all the pro-
grams VDiscover flags as potentially vulnerable using a
weighted average:

8% ∗

true

positives︷︸︸︷
0.55 + 92% ∗

false

positives︷︸︸︷
0.17 = 4.4% + 15.64% = 20.04%

Consequently, by analyzing 20.04% of our test set pointed
as potentially vulnerable by VDiscover we can detect 55%
of vulnerable programs. As expected, without the help of
our tool, a fuzzing campaign will randomly select test cases
to mutate. It needs to analyze 55% of the programs to de-
tect 55% of the vulnerable programs. Therefore, in terms
of our experimental results, we can detect same amount of
vulnerabilities 274% faster (≈ 55%/20.04%).

8.2 Feature Analysis and Robustness
After performing the series of experiments detailed in this
section, the results suggest that the proposed methodol-
ogy was appropriate for the prediction task. Nevertheless,
it is important to investigate further how the trained Ma-
chine Learning model is differentiating and characterizing
test cases.

In order to evaluate the robustness of the best predictor, it
is important to know which features are more important and
how they are used to predict. Despite model interpretability
is a very desirable property, there is no general approach
to understand how and why trained models take decisions
in the recall phase. Fortunately, we can easily extract an
importance score for each variable in the feature set from a
trained random forest [27].

To analyze the model robustness, first we want to define a
special subset of dynamic features: the features relevant to
the specific VDP. In our experiments, these features are de-
fined according to the procedure to detect easily exploitable
memory corruption as explained in 4.1. They include fea-
tures associated with certain function calls (e.g. strcpy,
memcpy, etc.) as well as the final state indicating if the
there is a crash, abort or exit.

Without loss of generality, we decided to analyze one of the
simplest models we trained: a random forest using bag of
words (1-gram) of dynamic features that achieved a rea-
sonable accuracy (32%). The most significant variables are
shown in Table 2a where relevant features are in bold.

As you can see, relevant features are widely used as the most
important ones for prediction. Still, the resulting classifier is

not completely dominated by only a few features. Neverthe-
less, at this point, it is critical to know if relevant features are
responsible for all or most of the accuracy in the prediction
task. If this is the case, the predicted model is just look-
ing for trivial evidence to detect vulnerabilities in memory
corruption.

A simple yet effective way to estimate the real importance of
a set of features is to remove them from the original dataset
and re-train the predictor. Such procedure will force the
model to predict without them. We can estimate how im-
portant relevant features are in the prediction comparing the
accuracy of the re-trained predictor. Interestingly enough,
after re-training without the relevant features, the test er-
ror in prediction is only marginally higher (35%) than our
best predictor. Most significant variables for the re-trained
predictor are shown in Table 2b.

Using this simple procedure, we show that the resulting pre-
dictor is robust, in the sense that the removal of some fea-
tures still allows to get a reasonable prediction for flagged
test cases. We hypothesize that the model is taking advan-
tage of the generality of the features to detect behaviorally
similar test cases. Using such similarity allows it to pre-
dict correctly instead of looking for features relevant to the
memory corruption itself.

8.3 Speed
VDiscover is implemented in Python using the python-
ptrace binding [39] and GNU Binutils. It is designed to scale
avoiding to use extremely slow operations like instruction
per instruction execution. Nevertheless, in terms of code
optimization there is very little work done.

The extraction of dynamic features is performed for every
analyzed binary hooking its global offset table and detect-
ing calls to C standard library functions. A very lightweight
value analysis of the arguments of every call is also per-
formed. The instrumented executions are on average only 7
times slower, a trade-off we considered acceptable given the
obtained results.

As it was explained in Sec. 5, static feature extraction is de-
fined as a stateless procedure, in which a part of control flow
graph is random-walked to collect subsequences of function
calls. Nevertheless, there is no need to explicitly reconstruct
the control flow graph, so the feature extraction cost is domi-
nated by the parsing and disassembly of the analyzed binary.
Fortunately, we employ GNU Binutils which is highly opti-
mized for this task, taking no more that a few seconds to
extract static features in a modern desktop computer.

It is also worth to mention that VDiscover works with ELF
x86 binaries on Linux. Despite the fact that the current im-
plementation is limited to that platform, there is no reason
to think that the same approach cannot work in other op-
erating systems without ptrace (e.g. Windows) if there is
support for breakpoints and peek/poke memory of a pro-
cess.

8.4 Comparison
As far as we know, no other technique was designed to per-
form vulnerability discovery at a large scale without source



Flagged Not Flagged
Flagged 55% 17%

Not Flagged 45% 83%

(a) VDiscover

Flagged Not Flagged
Exploitable 14% 5%

Probably Exploitable 21% 18%
Probably Not Exploitable 43% 59%

Unknown 22% 18%

(b) !Exploitable

Table 3: Comparative between VDiscover and !Exploitable predictions of test cases

code, so we have not found a fair approach to compare our
work with others. Nevertheless, we found a suitable tool to
give a fast evaluation of the bug severity in memory corrup-
tions: !Exploitable. It also works performing a lightweight
analysis of a test case. This tool was originally developed
by Microsoft [40] and later adapted to run in Linux using
GDB by the CERT [41].

Unlike our tool, !Exploitable requires a crash to analyze its
final state and the failing assembly instruction. It outputs
an exploitable category according to heuristics encoded in
prefixed rules: exploitable, probably exploitable, probably not
exploitable or unknown. After running all the test cases in
VDiscovery, we collected the categories answered by !Ex-
ploitable. A summary of our experiments is shown in Table
3b.

In order to make a sensible comparison between !Exploitable
and VDiscover, it is necessary to map such categories to
binary answers about the exploitability of the programs in
our dataset. A reasonable choice is to consider vulnera-
ble programs if they are flagged as exploitable or probably
exploitable. Computing the balanced error from Table 3b
results in 44% of test error while VDiscover is at 31%.

On the one hand, our tool represents a substantial improve-
ment in the prediction to discover new vulnerabilities. On
the other hand, !Exploitable analyzes crash executing pro-
grams at native speed and requires no training at all. Un-
fortunately, in our experiments, the accuracy of !Exploitable
is close to a random guess (e.g. a test error of 50%) and
thus results in poor performance to predict vulnerability at
a large scale. It is important to note that this comparison is
limited to the VDP selected for the experimental evaluation.

8.5 Data Limitations
As expected, lightweight extraction of features from binary
programs has several limitations: a prediction error of 31%
in the testing of VDiscover shows that there is room for
improvement. The confusion matrix from Table 3a presents
a visible unbalance between the accuracy of the detection of
flagged and non-flagged test cases. We hypothesize that the
relatively small number of flagged test cases available during
the training phase is limiting the classifiers accuracy.

It seems natural to try to combine both features sets to im-
prove prediction accuracy. Unfortunately, the results of this
strategy are quite disappointing. The test prediction error
were similar to the ones obtained using only static features.
We found no effective way of combining different sets of fea-
tures to improve prediction accuracy. We believe that the

train phase is affected by the fact that static features are less
diverse than dynamic ones because they are shared by all
the traces of the same program. In other words, the number
of independent training samples is reduced to the number
of different programs as soon as we include the static fea-
tures. Machine Learning algorithms assume independence
of the training examples and, in the presence of this (arti-
ficial) persistence in the static feature values for a large set
of flagged test cases, it tends to use this subset of features
for discrimination. Therefore, the generalization capabilities
are not better than using only static features.

The use of features also has its limitations. For instance,
static features cannot be used to analyze different test cases
of the same program, since the program is only statically
analyzed without taking into consideration its actual in-
put. This limitation did not affect our experiments, since
our dataset only contains one test case per program but
it is certainly an issue if VDiscover is used to evaluate a
large set of test cases. Additionally, static features should be
considered naturally more imprecise than dynamic features
in general, since every non-trivial binary program contains
many distinctive procedures.

The use of dynamic features has its own limitations: learn-
ing from traces is difficult because they have variable size
and they can contain different amounts of useful informa-
tion. For example, a complex program can use libraries.
As expected, each library will have their own intrinsic pat-
terns and a trace from such program will contain interleaved
events from different libraries making pattern recognition a
very challenging task.

9. RELATED WORKS
A very close work, albeit for a different problem of malware
analysis, is reported in [42]. Similar to our approach, its au-
thors have used static and dynamic features to form vectors
of binary features of malware behavior. This vector is used
in a supervised Machine Learning algorithm to produce rules
for further classification. In spite of the reported similarities,
there are differences in the way the vectors are generated.
Unlike the reported work, our static and dynamic feature
extraction is much lighter and hence introduces a very small
overhead. It is important to note that extracting features
from the actual malware process and code is a very chal-
lenging task, since most of these programs are packed or
encrypted, and designed to avoid running normally under a
virtualized environment. Therefore, we do not claim that
our technique can be easily adapted to analyze malware.

Another close work is reported in [43], where the idea is



to detect vulnerable code patterns from vulnerable source
code. Similar to our approach, the main idea is to form a
vector of characteristics that capture the semantic and syn-
tactic structure of the function code and then use a machine
learning approach to classify new functions. However, unlike
ours, the proposed technique works with the source code of
the program and has the different objective of finding vul-
nerable code patterns.

It is also worth to mention that there are plenty of ap-
proaches reported in the past wherein machine learning tech-
niques are applied for attack detection (in the context of in-
trusion detection systems) [44, 45, 46]. However, we would
like to point out that though the objective of finding sub-
tle and hidden dependencies by using Machine Learning re-
mains the same, our work involves a much fine-grained ap-
proach to extract feature vectors, which is more tuned to-
wards the problem at hand i.e., classifying the bug on the
basis of its severity.

10. CONCLUSIONS AND FUTURE WORK
As we have shown in previous sections, the large scale pre-
diction of programs flagged and unflagged as vulnerable us-
ing static/dynamical features is feasible even without source
code. The reached error rate of 31% suggests that there are
patterns in the features that can be detected using a ma-
chine learning algorithm. Given such promising results, we
are already working on the evaluation of different VDP as
well as some directions that we plan to explore in the near
future.

On the one hand, regarding static features, it could be a
good idea to search for similarities between program slices,
e.g. by creating a tree representing the possible sequences
of C standard library calls. Using this tree could help to
detect similar behavior during the training of the classifier.

On the other hand, regarding dynamical features, it is ex-
pected that interesting patterns could appear at different
locations along the traces. Convolutional neural networks
(CNN) [2] have been developed to model patterns in images
with translation invariance along the image 2D array. This
dramatically reduces the number of parameters to train with
respect to a standard multilayer perceptron, improving gen-
eralization capabilities. We then expect that a 1D version
of a CNN can improve the current performances over traces.
There is a promising ongoing work in this direction.

In conclusion, this study shows that Machine Learning appli-
cations on a large scale binary-only vulnerability detection
can have the potential to significantly increase the number
of vulnerabilities found at operating system scale.
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